Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Synechocystis PCC 6803 Strains for Maximal, 24-Hour Production of Hydrogen Gas Roger L. Ely (ely@engr.orst.edu) Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR 97331 ## **ABSTRACT** This talk will describe results from an ongoing GTL project in which we are using the cyanobacterial species Synechocystis PCC 6803 to address two main factors affecting H₂ production in PCC 6803: NADPH availability and O₂ sensitivity. H₂ production in PCC 6803 requires that the NADP pool be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, the [NiFe]-hydrogenase (H₂ase) in PCC 6803 is reversibly inactivated at very low O_2 levels due to binding of O_2 at the active site. Largely because of this O_2 sensitivity and the requirement for high NADPH levels, much of the overall H₂ production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H₂ production. Therefore, we have used H₂ production profiling and metabolic flux analysis to examine light and dark H₂ production under a number of culture conditions with wild-type (WT) PCC 6803 cells and with mutant strains. Also, some of the mutants we have created have shown themselves capable of increased H₂ production. Specific project tasks are as follows: - 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H₂ production profiles; - 2. Conduct metabolic flux analyses for enhanced H₂ production profiles using selected culture conditions and inhibitors of specific pathways; - 3. Create PCC 6803 mutant strains with modified H₂ases exhibiting increased O₂ tolerance and greater H₂ production; - 4. Integrate enhanced H₂ase mutants and culture and metabolic factor studies to maximize 24-hour H₂ production.